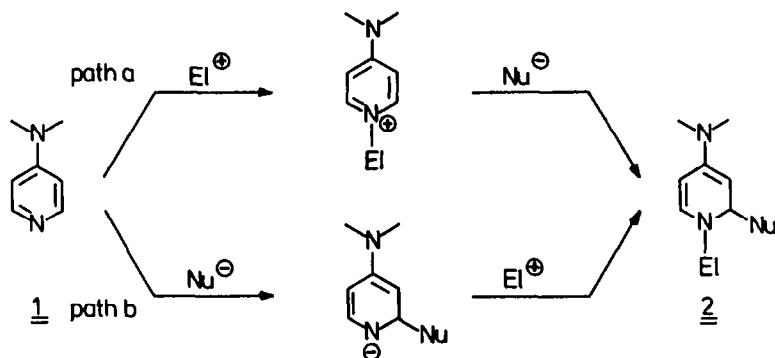
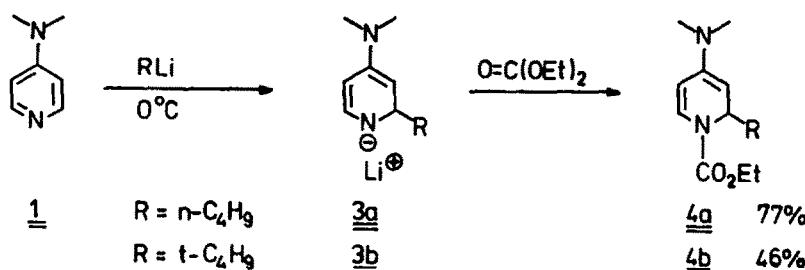


THE FIRST 4-DIALKYLAMINO-1,2-DIHYDROPYRIDINE DERIVATIVES: SYNTHESIS AND BASIC REACTIONS


Hubert Bader ¹⁾ and Hans-Ulrich Reissig ²⁾
Institut für Organische Chemie der Universität Würzburg
Am Hubland, D-8700 Würzburg, FRG

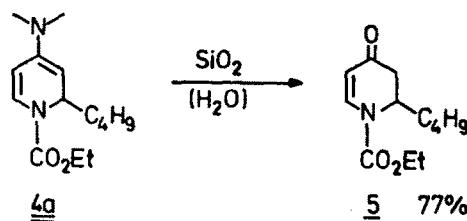
(Received in Germany 16 September 1985)


Summary: The first two 4-dialkylamino-1,2-dihydropyridine derivatives **4a** and **4b** are prepared in good yield by addition of *n*-butyllithium or *t*-butyllithium to 4-dimethylaminopyridine **1** followed by quench with diethylcarbonate. Compound **4a** can be hydrolyzed under mild conditions providing 4-dihydropyridone **5**, an interesting acceptor building block. On the other hand reaction of **4a** with dimethyl acetylene dicarboxylate gives benzene derivative **7** via a cycloaddition-cycloreversion path.

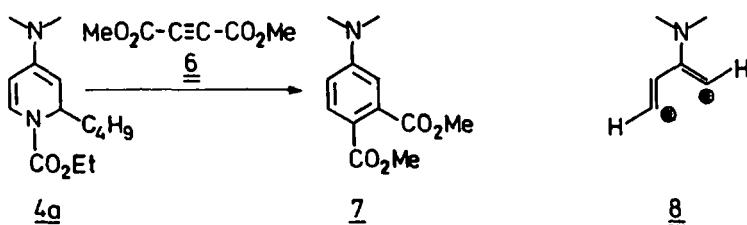
4-Dimethylaminopyridine (DMAP) **1** has found extensive use as a super catalyst for acylations and related reactions ²⁾. Although commercially available and inexpensive, its potential to serve as a functionalized building block in stoichiometric amounts for organic synthesis has so far been neglected ³⁾. We were attracted by the possibility to convert DMAP **1** into 1,2-dihydropyridines of type **2**, which should display enamine reactivity and might act as very electronrich cyclic dienes in Diels-Alder as well as other cycloadditions opening the way to interesting products.

Scheme I

Two principle alternatives to transform **1** into **2** are depicted in Scheme I: addition of an electrophile - usually an acylating agent - followed by treatment with an appropriate nucleophilic component (path a) is the most common method for dihydropyridine preparations ⁴⁾. Not surprisingly, however, a broad spectrum of reagent combinations under largely varied reaction conditions applied with DMAP **1** at best delivered traces of 1,2-dihydropyridines **2** ⁵⁾. We therefore turned to path b interchanging the sequence of reagent additions. To our delight *n*-butyllithium (1.25 equivalents) adds smoothly to DMAP **1** in tetrahydrofuran (THF) at 0 °C as ascertained by ¹H NMR control. The orangered solution formed under these conditions after one hour shows a doublet at 6.20 ppm (*J* = 7.0 Hz) as the only low field signal which is assigned to H-6 of adduct **3a** ⁶⁾. Addition of diethylcarbonate at -78 °C, warming to room temperature, aqueous work up, and distillation afford the urethane **4a** in 77 % yield. To our best knowledge **4a** is the first 4-dialkylamino-1,2-dihydropyridine ⁴⁾⁷⁾.



4a is rather labile at room temperature and moderately stable at -30°C . Therefore immediate use after preparation is recommended. All spectral data are in accord with its proposed structure (see experimental part). Due to the hindered rotation around the $\text{N}-\text{CO}_2\text{Et}$ bond the ^1H NMR spectrum at 60 MHz exhibits two broad doublets for 6-H and 5-H at 6.67 and 5.30 ppm ($J = 7$ Hz)⁸⁾. At 400 MHz, four sharp doublets show up for these protons (6.80, 6.68, 5.39 and 5.30 ppm, $J = 7.5$ Hz) according to the two rotamers of **4a**.


Other electrophiles (ClCO_2Et , CISIMe_3 , H_2O and MeI) added to **3a** did not provide definite reaction products although the crude product obtained after methyl iodide quench might contain the corresponding 2,5-dihydropyridine derivative⁹⁾.

Monoaddition of t-butyllithium to **1** can best be performed at 0°C in diethylether instead of THF delivering a solution of **3b** (^1H NMR: 6.48 ppm, d, $J = 7.0$ Hz, 6-H). Trapping this anion with diethyl-carbonate and usual work up delivers **4b** in unoptimized 46 % yield. So far, synthesis of **4a** and **4b** analogues via path b (Scheme 1) was not successful employing various hydride reagents or methyl-, phenyl- or trimethylsilyllithium; thus, only the most nucleophilic organolithiums add to the electronrich pyridine **1**.

Despite these current limitations adducts **4** can serve as versatile building blocks. Mild hydrolysis of **4a** with wet silica gel affords the 4-dihydropyridone **5** in 77 % yield. The conversion of **1** \rightarrow **5** without purification of the intermediate **4a** occurs with a satisfying 58 % overall yield. Substituted 4-dihydropyridones of type **5** are compounds of actual pharmacological¹⁰⁾ and synthetic¹¹⁾ interest.

Reaction of **4a** with dimethyl acetylenedicarboxylate **6** at room temperature gives the crystalline phthalic acid derivative **7**¹²⁾ in 44 %. Presumably, the Diels-Alder addition of **6** to **4a** affording a (non detectable) bicyclic intermediate is followed by fast cycloreversion of an imine to the aromatic compound **7**. Further experiments have to establish whether diene **4a** generally behaves as synthon **8** in cycloadditions¹³⁾.

Acknowledgement: Execution of some supplementary experiments by Miss Hiltrud Lorey as well as generous support by the Fonds der Chemischen Industrie and the Universitätsbund Würzburg is gratefully appreciated.

Experimental Part

IR spectra were recorded on a Beckman-Acculab 4 spectrometer, UV spectra on a Beckman DB-GT spectrophotometer. Nuclear magnetic resonance spectra were obtained on a Varian T-60 or Bruker WH 400 in CDCl₃ with tetramethylsilane as the internal standard. Boiling points (bp) reported correspond to the oven temperature of a Büchi-Kugelrohr apparatus. Melting points are not corrected. 4-Dimethylaminopyridine was dissolved in methanol filtered through a pad of charcoal and recrystallized from ethyl acetate. THF was distilled from K/benzophenone, diethyl ether from NaH just before use.

Ethyl 4-Dimethylamino-2-n-butyl-1,2-dihydropyridine-1-carboxylate (4a): 30.0 ml of a 2.09 M solution (62.7 mmol) n-butyllithium in hexane are added to a suspension of 6.10 g (50.0 mmol) 1 in 40 ml THF under dry nitrogen at 0 °C within 15 min. After 30 min the red solution is cooled to -78 °C and treated with 7.09 g (60.0 mmol) diethyl carbonate for 30 min at this temperature, plus 1 h at room temperature. After addition of 50 ml saturated NaHCO₃ solution and 50 ml t-butylmethyl ether (MTB), the aqueous phase is extracted twice with 30 ml MTB and the organic phases are dried over Na₂SO₄. Concentration delivers 12.2 g (97%) crude product which after distillation at 110-130 °C/0.02 mm affords 9.70 g (77%) **4a** as yellow oil. - ¹H NMR (CDCl₃, 60 MHz): δ=6.67 (bd, *J* = 7 Hz, 1H, 6-H), 5.30 (bd, *J* = 7 Hz, 1H, 5-H), 5.0-4.2 (m, 2H, 2-H, 3-H), 4.16 (q, *J* = 7.0 Hz, 2H, OCH₂), 2.58 (s, 6H, NMe₂), 1.7-0.5 (m, 12H, C₄H₉, OCH₂CH₃). ¹H NMR (CDCl₃, 400 MHz): δ=6.80, 6.68 (2d, *J* = 7.5 Hz, 1H, 6-H), 5.39, 5.30 (2d, *J* = 7.5 Hz, 1H, 5-H), 4.8-4.6 (m, 1H, 2-H), 4.5-4.4 (m, 1H, 3-H), 4.23 (q, *J* = 7.0 Hz, 2H, OCH₂), 2.32 (s, 6H, NMe₂), 1.7-1.2 [m, 6H, -(CH₂)₃-], 1.30 (t, *J* = 7.0 Hz, 3H, OCH₂CH₃), 0.88 (t, *J* = 7.0 Hz, 3H, -C₃H₆-CH₃). - ¹³C NMR (CDCl₃): δ=142.9, 142.5 (2s, C=O, C-4), 126.1, 125.3 (2d, C-6, C-5), 104.1 (d, C-3), 61.5 (t, OCH₂), 52.3 (d, C-2), 40.3 (q, NMe₂), 34.0, 26.6, 22.4 (3t, -C₃H₆-), 14.2, 13.7 (2q, 2x CH₃). IR (CCl₄): 3080-2790 (C-H), 1720 (C=O), 1655 cm⁻¹ (C=C). - UV (hexane): λ_{max} (log ε)=253 (3.92), 299 nm (3.37). - C₁₄H₂₄N₂O₂ (252.4) Calc. C, 66.63; H, 9.59; N, 11.10. Found C, 66.44; H, 9.95; N, 11.05%.

Ethyl 4-Dimethylamino-2-t-butyl-1,2-dihydropyridine-1-carboxylate (4b): 15.5 ml of a 1.55 M solution (24.0 mmol) t-butyllithium in pentane are added to a suspension of 2.44 g (20.0 mmol) 1 in 20 ml diethyl ether under dry nitrogen at 0 °C. After one hour the red solution is cooled to -78 °C and treated with 2.83 g (24.0 mmol) diethyl carbonate for one hour. Five minutes after removing the cooling bath, 20 ml of MTB and 20 ml of saturated NaHCO₃ solution are added. The aqueous phase is extracted twice with 20 ml MTB and the organic phases are dried with Na₂SO₄. Concentration and distillation (120 °C/0.02 mm) deliver 2.34 g (46%) **4b** as yellow oil (ca. 90% pure). - ¹H NMR (CDCl₃, 60 MHz): δ=7.0-6.5 (m, 1H, 6-H), 5.5-5.1 (m, 1H, 5-H), 4.7-4.3 (m, 2H, 2-H, 3-H), 4.18 (q, *J* = 7.0 Hz, 2H, OCH₂), 2.58 (s, 6H, NMe₂),

1.27 (t, $J = 7.0$ Hz, 3H, OCH_2CH_3), 0.82 (s, 9H, C_4H_9). - IR (CCl_4): 3080-2800 (C-H), 1720 (C=O), 1655 cm^{-1} (C=C). - $\text{C}_{14}\text{H}_{24}\text{N}_2\text{O}_2$ (252.4) Calc. C, 66.63; H, 9.59; N, 11.10. Found C, 66.58; H, 9.98; N, 11.46%.

Ethyl 2-n-Butyl-4-oxo-1,2,3,4-tetrahydropyridine-1-carboxylate (5): 1.26 g (5.00 mmol) **4a** in 30 ml MTB are stirred with 12 g wet silica gel (obtained by mixing 10 g silica gel 0.2-0.5 mm, Merck, with 2 g of water) for 16 h at room temperature. Filtration and careful elution with MTB, concentration and distillation at $100^\circ\text{C}/0.02$ mm afford 866 mg (77%) **5** as colorless oil. - ^1H NMR (CDCl_3): $\delta = 7.75$ (bd, $J = 8.0$ Hz, 1H, 6-H), 5.30 (bd, $J = 8.0$ Hz, 1H, 5-H), 4.8-4.4 (m, 1H, 2-H), 4.38 (q, $J = 7.5$ Hz, 2H, OCH_2), 2.9-2.3 (m, 2H, 3-H), 1.42 (t, $J = 7.5$ Hz, 3H, OCH_2CH_3), 1.9-0.7 (m, 9H, C_4H_9). - IR (CCl_4): 3000-2850 (C-H), 1730 (N-CO₂E_t), 1685 (C=O), 1610 cm^{-1} (C=C). - $\text{C}_{12}\text{H}_{19}\text{NO}_3$ (225.3) Calc. C, 63.98; H, 8.50; N, 6.22. Found C, 64.21; H, 8.83; N, 6.54%.

Dimethyl 4-Dimethylaminophthalate (7): 0.71 g (5.00 mmol) dimethyl acetylene dicarboxylate **6** in 2.5 ml THF are added to 1.26 g (5.00 mmol) **4a** in 2.5 ml THF at -78°C . After one hour at this temperature the resulting red solution is stirred for 5 d at room temperature. Filtration through a pad of aluminum oxide (activity III) and low temperature crystallization from ether/petrol ether at -78°C provide 0.52 g (44%) **7** as colorless needles (m.p. 58-60 $^\circ\text{C}$; ref. 12: m.p. 59 $^\circ\text{C}$). - ^1H NMR (CDCl_3): $\delta = 7.75$ (d, $J = 9.0$ Hz, 1H), 6.8-6.4 (m, 2H), 3.92, 3.88 (2s, 2x3H, OCH_3), 3.04 (s, 6H, NMe_2). IR (CCl_4): 3000-2800 (C-H), 1730 (C=O), 1620 cm^{-1} (C=C).

References

- 1) Part of the Diploma Thesis, Universität Würzburg, 1984.
- 2) a) H. Vorbrüggen, G. Höfle and W. Steglich, *Angew. Chem.* **90**, 602 (1978); *Angew. Chem. Int. Ed. Engl.* **17**, 569 (1978); b) E. F. V. Scriven, *Chem. Soc. Rev.* **12**, 129 (1983).
- 3) For the very few known reactions of DMAP see ref. 2a.
- 4) a) U. Eisner and J. Kuthan, *Chem. Rev.* **72**, 1 (1972); b) D. M. Stout and A. I. Meyers, *Chem. Rev.* **82**, 223 (1982).
- 5) In most cases DMAP **1** demonstrates its super acylating/alkylating quality impressively.
- 6) G. Illuminati and F. Stegel, *Advances in Heterocyclic Chemistry* (Ed. A. R. Katritzky), Vol. 34, p. 306, Academic Press, New York 1983.
- 7) 4-Methoxy-1,2-dihydropyridine has been synthesized only recently: S. Raucher and J. E. Macdonald, *Synth. Commun.* **10**, 325 (1980).
- 8) L. M. Jackman and F. A. Cotton, *Dynamic Nuclear Magnetic Resonance Spectroscopy*, p. 203, Academic Press, New York 1975.
- 9) ^1H NMR doublets at 7.42 ($J = 7$ Hz) and 4.98 ppm ($J = 7$ Hz) beside a broad multiplet (4.0-0.7 ppm) might arise from 4-dimethylamino-2-n-butyl-5-methyl-2,5-dihydropyridine: for formation of 2,5-dihydropyridines see: R. F. Francis, C.D. Crews and B. Scott, *J. Org. Chem.* **43**, 3227 (1978).
- 10) J.-P. Roduit and Hugo Wyler, *Helv. Chim. Acta* **68**, 403 (1985).
- 11) a) A. P. Kozikowski and P. Park, *J. Org. Chem.* **49**, 1974 (1984); b) P. Guerry and R. Neier, *Synthesis* **1984**, 485 and references cited.
- 12) a) H. Neunhöffer and G. Werner, *Liebigs Ann. Chem.* **1973**, 128; b) R. Gompper and U. Heinemann, *Angew. Chem.* **92**, 207 (1980); *Angew. Chem. Int. Ed. Engl.* **19**, 216 (1980).
- 13) For cycloadditions with 1,2-dihydropyridines see: B. Weinstein, L. C. Lin and F. W. Fowler, *J. Org. Chem.* **45**, 1675 (1980) and ref. 4b.